
Model Checking of Security Patterns
Implementation: Application to SCADA

Fadi Obeid
PhD student, Lab-STICC

ENSTA Bretagne, Brest, France
Email: fadi.obeid@ensta-bretagne.org

Philippe Dhaussy
HDR, Lab-STICC

ENSTA Bretagne, Brest, France
Email: philippe.dhaussy@ensta-bretagne.fr

I. INTRODUCTION

Supervisory control and data acquisition (SCADA) sys-
tems can be found in modern industrial facilities such as
water pipes, power plants, oil refineries, chemical factories
and nuclear facilities. These systems use coded signals over
communicating channels to monitor and control numerous
devices on multiple and distant sites. Securing SCADA com-
munications has always been a challenge for security experts,
especially that the used devices usually lack the support of
cryptography. The increased connectivity of SCADA systems,
increases the security requirements as well as the security
issues and possible threats. Recently, there has been a high
increase in SCADA attacks [1].

Many studies [2], [3], [4] were conducted to address the
security threats in SCADA and/or propose some theoretical
solutions and guides. Other studies [5], [6] aim to enhance
the security level and fortify the provided services along with
the managed critical data. One of the proposed solutions [7]
is to apply security patterns on SCADA architectures.

A security pattern unifies efforts to create a trustworthy
solution for a specific reoccurring security problem, which
would make sure best practices are being used. Security pat-
terns are usually defined and formalized by security specialists
and used later by developers who may lack the needed security
knowledge. A security pattern provides detailed guideline to
solve a security issue using the best found solution. When
applying security countermeasures on a system, we need
to make sure that they do not interfere with the correct
functionality of the system and its services.

Model checking (MC) proved to be effective and trustwor-
thy in certifying whether a system meets its requirements and
ensuring its correct functionality [8]. In this paper, we use MC
tools to verify the our architectures regarding its functionality,
the security requirements, and potential attacks.

We test our concept using a simple architecture with one
security pattern and only one type of attacks. However, this is
only a foothold for the next step which is combining multiple
security patterns and automatic application of these patterns
into an architecture.

Figure 1 presents a general SCADA architecture and its
communication to a second SCADA, a local network, and
the Internet. In our work, we are interested in the SCADA

network, which includes the communications between the
supervisory system, the PLCs, and the RTUs.

Figure 1. SCADA network presentation

Some related studies are presented in section 2. In section
3 of this paper we present the applicative part of this work
by defining a use case, a security pattern, and an attack. We
demonstrate and explain our results in section 4. Finally, we
conclude this work in section 5 and reveal the focus of our
research from this point forward.

II. RELATED WORK

SCADA security, security patterns, and formal verification
can be found individually in many researches. A discussion
on the different security issues in SCADA networks can be
found in [3]. A classification of SCADA cyber attacks can
be found in [4], classified based on the type of the target:
software, hardware, or communication stack. SCADA-specific
security solutions and SCADA-specific IDS can be found in
[9], [10] respectively. A survey on security patterns can be
found in [11]. [12], [13] introduce many security patterns.
Finally, a survey on Formal verification of security protocol
implementations can be found in [14].

Other studies are closer to the work presented in this paper.
[7] proposes using security patterns to design secure SCADA
systems. [15] defines formal constrants of some security
patterns to formally verify these patterns. MC security patterns
compositions can be found in [16] where they use a case study
to show how wrongly combining security patterns may result
in new problems.



III. APPLICATION

Our use case consists of a nuclear power plant that satisfies
a small city’s consumption. The electricity consumption may
increase or decrease (by δ) at any point of time. To respond
to the changing consumption, the power plant may increase
its working level to increase the production (by 1δ).

Apart from the central server, the plant is divided into 3
sections, each supervised by one PLC: A central core: Uses
uranium to heat up pressed water. A steam generator: Uses
heated pressed water to transform river water into steam. A
turbine generator: Uses steam to generate electricity.

After each change in the consumption, the city sends a mes-
sage about its current consumption needs to the central server.
The central server recomputes the needed working level, and
if it needs to be modified, it sends modification orders to the
PLCs. Each PLC would then forward the command to the
associated actuator(s). Afterwards, the PLCs would send status
requests to all associated switches and sensors. Once a PLC
receives all status updates, it measures the state of the section
and sends it to the server.

When an order is executed, it may change some inputs and
outputs. To simplify our model, these changes are managed
by a process, and only happen when all current orders are
terminated.

Figure 2 demonstrates the different sections of the plant
along with their inputs and outputs.

Figure 2. Nuclear Power Plant

A. Authorization Pattern
The Authorization pattern [13], [17] is used in various sys-

tems. It solves the problem of supervising resources accessed
by subjects by defining a relation of access rights between
subjects and protected objects (Figure 3).

Figure 3 represents the general class diagram of the autho-
rization pattern. In the means of our application, an object can
be the working level of the plant, or a switch, or even the value
shown by a sensor.

Figure 3. Authorization Pattern Class Diagram

B. Attack

Our simple attack consists of sending bad commands, for
example the attacker would send a message to a PLC ordering
it to change its working level even if there is no need to do so.
Since in the initial architecture, no authorizations are needed
to change a value, the orders sent by an attacker are going to
be accepted by the receiver as authorized commands.

IV. TESTS AND RESULTS

Our research consists of applying security patterns to
SCADA systems. We need to formally prove, not only the
correctness of such a combination, but also the actual need
for applying security patterns in current SCADA systems.

A. Utilities

To be able to verify our model we use 3 essential elements:
We use the Intermediate Format for the Embedded Dis-

tributed Component Architectures (FIACRE) [18] to define our
architecture and the authorization pattern and the attack. We
use the Context Description Language (CDL) [19] to formalize
the security properties. One of the main advantages of using
CDL is the reduction in state explosion [20]. We use the
Observer-Based Prover (OBP) explorer (www.obpcdl.org) to
explore our model and observe our properties. Figure 4 demon-
strates the connections between the system requirements, the
properties, the specifications and the explorer.

Figure 4. Observer-Based Prover

B. Properties Definition

The most basic requirement of our system is for the plan
to provide enough power for the city without producing
unnecessary power. This means that production should always
be higher or equal to consumption (pty1) but never too much
higher (pty2). Using CDL, we can specify a property (pty)
based on an event (eve) which can be a simple predicate
(pred) change. The state of the property changes depending
on events so we can observe if at some point the property is
rejected (something bad happened) and in some cases accepted
(something good happened).

Using CDL, we write our first property (pty1) as follows:
• predicate pred1 is: consumption > production
• event eve1 is: pred1 becomes true
• property pty1 is: start−−//eve1/− > reject

This means that pred1 is true if the consumption is higher
then the production. eve1 is observed at the point where



pred1 passes from false to true. If at some point, eve1 is
observed, then pty becomes rejected.

We write the second property (pty2) in the same fashion
but we consider pred as follows: production − 3δ >=
consumption

In our case, if an attacker successfully sends a message
to a device, and the production still corresponds to the con-
sumption, the attack would go unnoticed. This would be a
successful attack, but it does not damage our system since it
does not present a risk to the system requirements.

C. Different Modes

We verify our system under different circumstances. First,
we check our system in a normal mode (NM), to prove that it
represents the system correctly. In the attacked mode (NMUA),
we added an attacker to prove that the system lacks of security.
We added the authorization pattern to the normal mode to
create a secure mode (SM). We finally tested the secure mode
with the presence of an attacker (SMUA). The results are
shown in table I.

Mode States transitions Time (sec) Violated Properties
NM 319 460 0.511 -

NMUA 3316 7809 1.365 2
SM 319 460 0.514 -

SMUA 1515 3952 0.934 -

Table I
MODELS EXPLORATIONS RESULTS

In NM None of the security properties were violated,
meaning the system worked correctly as it is supposed to
without problems. In NMUA, the difference in the number
of states and transitions, can already be understood as a
problem. The increased number of states and transitions means
that the system did some unexpected transitions, and entered
some unexpected states Both of our security properties were
violated. In SM none of the security properties were violated.
We can notice that the number of states and transitions is
the same as the ones in the normal mode. This is due to
the fact that the used security patterns did not change the
normal functionality of the system. Finally, in SMUA, none
of the security properties were violated which means that
the countermeasure was effective. The increased number of
states and transitions here is due to the messages sent by the
attacker and the refusals of the system devices. The system is
still working correctly and all additional states and transitions
are deviations that do not affect the security of the system.
Example: From state A, receive a message from the attacker,
refuse the message, go back to state A.

V. CONCLUSION

We were able to use MC to verify the correct implementa-
tion of a security pattern on a SCADA architecture.

Based on this work, We started constructing a small library
of security patterns, a library of potential attacks, and a meta
model for SCADA architectures. Any architecture based on
our meta model can use the security patterns from our library

to generate a secure architecture. The secure architecture is
then verified automatically using model checking tools. The
resistance of the secure architecture is also verified by proving
its correctness in the case of attacks from the attacks library.

In this work we consider that messages are en-
crypted/signed, however, when it comes to SCADA commu-
nication, cryptography is a big issue. Therefore, we are also
working on a lite cryptography protocol that considers the
requirements and limitations of SCADA.

REFERENCES

[1] Eric Byres and Justin Lowe. The myths and facts behind cyber security
risks for industrial control systems. In Proceedings of the VDE Kongress,
volume 116, pages 213–218, 2004.

[2] Ronald L Krutz. Securing SCADA systems. John Wiley & Sons, 2005.
[3] Vinay M Igure, Sean A Laughter, and Ronald D Williams. Security

issues in scada networks. Computers & Security, 25(7):498–506, 2006.
[4] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. A taxonomy of cyber

attacks on scada systems. In Internet of things (iThings/CPSCom), 2011
international conference on and 4th international conference on cyber,
physical and social computing, pages 380–388. IEEE, 2011.

[5] Yongge Wang. sscada: securing scada infrastructure communications.
International Journal of Communication Networks and Distributed Sys-
tems, 6(1):59–78, 2010.

[6] Igor Nai Fovino, Alessio Coletta, Andrea Carcano, and Marcelo Masera.
Critical state-based filtering system for securing scada network proto-
cols. Industrial Electronics, IEEE Transactions on, 59(10):3943–3950,
2012.

[7] Eduardo B Fernandez and Maria M Larrondo-Petrie. Designing secure
scada systems using security patterns. In System Sciences (HICSS), 2010
43rd Hawaii International Conference on, pages 1–8. IEEE, 2010.

[8] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[9] Igor Nai Fovino, Alessio Coletta, and Marcelo Masera. Taxonomy of
security solutions for the scada sector. Project ESCORTS Deliverable,
2, 2010.

[10] Bonnie Zhu and Shankar Sastry. Scada-specific intrusion detec-
tion/prevention systems: a survey and taxonomy. In Proceedings of the
1st Workshop on Secure Control Systems (SCS), 2010.

[11] Nobukazu Yoshioka, Hironori Washizaki, and Katsuhisa Maruyama. A
survey on security patterns. Progress in informatics, 5(5):35–47, 2008.

[12] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling
application security. Urbana, 51:61801, 1998.

[13] Eduardo B Fernandez and Rouyi Pan. A pattern language for security
models. In proceedings of PLOP, volume 1, 2001.

[14] Matteo Avalle, Alfredo Pironti, and Riccardo Sisto. Formal verification
of security protocol implementations: a survey. Formal Aspects of
Computing, 26(1):99–123, 2014.

[15] Ronald Wassermann and Betty HC Cheng. Security patterns. In
Michigan State University, PLoP Conf. Citeseer, 2003.

[16] Jing Dong, Tu Peng, and Yajing Zhao. Model checking security
pattern compositions. In Quality Software, 2007. QSIC’07. Seventh
International Conference on, pages 80–89. IEEE, 2007.

[17] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad. Security Patterns: Integrating
security and systems engineering. John Wiley & Sons, 2013.

[18] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali,
Hubert Garavel, Pierre Gaufillet, Frederic Lang, and François Vernadat.
Fiacre: an intermediate language for model verification in the topcased
environment. In ERTS 2008, 2008.

[19] Philippe Dhaussy, Frédéric Boniol, Jean-Charles Roger, and Luka Ler-
oux. Improving model checking with context modelling. Advances in
Software Engineering, 2012:9, 2012.

[20] Philippe Dhaussy, Jean-Charles Roger, and Frederic Boniol. Reducing
state explosion with context modeling for model-checking. In High-
Assurance Systems Engineering (HASE), 2011 IEEE 13th International
Symposium on, pages 130–137. IEEE, 2011.


